
 Chapter 8: Sorting 211

8 Sorting

Most data processing applications require data to be sorted in some way, perhaps into alphabetical

order of customer surnames or numerical order of product identification codes. In this chapter we

will examine a technique for sorting data using arrays.

We begin with an application which requires text values to be sorted alphabetically:

A college is compiling a list of the courses which it offers to students. After entering

the course titles, the program should sort and display the list in alphabetical order.

Begin the project in the standard way. Close all previous projects, then set up a New Project. Give

this the name subjects, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the subjects project, and select New / JFrame

Form. Give the Class Name as subjects, and the Package as subjectsPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the Design screen. Add a Table component to the form and rename

this as tblCourse.

212 Java Programming for A-level Computer Science

Select the Table and go to the Properties window. Locate the model property and click in the right

column to open the Table Settings window.

Set the number of Rows to 12 and Columns to 1. Give the column title as "Course", and the data

type as String.

Click the OK button to close the table editing window. Check that the table is displayed correctly.

Add a button below the table, giving this the caption "Sort" and the name btnSort.

 Chapter 8: Sorting 213

Use the Source tab to move to the program code view. Add a Java module 'TableCellEditor'. Define

an array 'course' which will be used to hold the course data entered in the table, ready for sorting.

 package subjectsPackage;

import javax.swing.table.TableCellEditor;

public class subjects extends javax.swing.JFrame {

 public static String[] course=new String[12];

 public subjects() {
 initComponents();
 }

Use the Design tab to return to the form layout view. Double click the "Sort" button to create a
method.

We begin by stopping the table editor, to ensure that all text entries will be available for processing.
The next step is to collect the data values from the table and insert these into the course array. We
do not know in advance how many courses will be entered by the user, so a loop operates for each
row of the table until a blank row is reached. The number of data values found in the table is
recorded by the variable 'count'.

 private void btnSortActionPerformed(java.awt.event.ActionEvent evt) {

 TableCellEditor editor = tblCourse.getCellEditor();
 if (editor != null)
 {
 editor.stopCellEditing();
 }
 int count=0;
 while (tblCourse.getModel().getValueAt(count,0)!=null)
 {
 course[count]= tblCourse.getModel().getValueAt(count,0).toString();
 count++;

 if (count==12)
 {
 break;

 }
 }

 }

The course data is now in the array, and can be sorted using a method called a Bubble Sort. This
compares each pair of entries in the list in turn, and swaps the entries if they are not correct
alphabetical order. For example:

 Mathematics

Geography

Chemistry

English

Geography

Mathematics

Chemistry

English

Geography

Chemistry

Mathematics

English

Geography

Chemistry

English

Mathematics

214 Java Programming for A-level Computer Science

After the first pass through the data, the entries are not yet sorted correctly. However, the course

names which are earlier in the alphabet have moved upwards in the list, whilst those later in the

alphabet have moved down. The process can be repeated until the data is fully sorted.

Each pass through the data can be carried out with a loop, using a loop counter variable i:

 for (int i = 0; i < count - 1; i++)

Each time, we are comparing the course at position i with the course below this at position (i+1)

 i = 0 i = 1

We must exchange the course names if these are not currently in the correct alphabetical order.

At first glance, it might seem possible to do this by means of the lines:

 course[i] = course[i+1];

 course[i+1] = course[i];

However, this would result in the two array elements containing the same data value:

 course[i] course[i+1]

We can avoid this problem by introducing a temporary storage location:

 tempCourse=course[i];

 course[i]=course[i+1];

 course[i+1]=tempCourse;

This technique, known as a triangular exchange, allows the data items to be processed correctly:

0 Mathematics

1 Geography

2 Chemistry

3 English

0 Geography

1 Mathematics

2 Chemistry

3 English

course[i]

course[i+1] course[i]

course[i+1]

Mathematics Geography

Geography

Geography

course[i] = course[i+1];

course[i+1] = course[i];

Mathematics Geography

course[i]

tempCourse

Mathematics

1 3

2

course[i+1]

 Chapter 8: Sorting 215

A flow chart for the sort process is given below. Notice how we use a Boolean variable 'swap' to

identify when the sorting is completed. The program continues to carry out passes through the

course array until a loop can be completed without the need for any swapping of data items.

Y

Y

N

count = count + 1

start

swap = false

are course[count]

and course[count+1] in

the wrong order?

more courses

to compare?

swap = true?

tempCourse = course[count]

count + 1

N

N

Y

transfer data to the course[] array

course[count] = course[count+1]

count + 1

course[count+1] = tempCourse

count = 1

swap = true

stop

transfer the sorted course[] array

back into the table

216 Java Programming for A-level Computer Science

We will now implement the algorithm shown in the flowchart. Add lines of program code to the

button click method:

 while (tblCourse.getModel().getValueAt(count,0)!=null)
 {
 course[count]= tblCourse.getModel().getValueAt(count,0).toString();
 count++;
 if (count==12)
 {
 break;
 }
 }

 Boolean swap=true;
 String tempCourse;
 while (swap==true)
 {
 swap=false;
 for (int i=0; i<count-1;i++)
 {
 if (course[i].compareTo(course[i+1])>0)
 {
 tempCourse=course[i];
 course[i]=course[i+1];
 course[i+1]=tempCourse;
 swap=true;
 }
 }
 }
 for(int i=0;i<count;i++)
 {
 tblCourse.getModel().setValueAt(course[i],i,0);
 }

 }

Run the program. Enter a series of course titles, then click the "Sort" button. Check that the courses
now appear in correct alphabetical order.

 Chapter 8: Sorting 217

For the next project we will create a more substantial data processing application combining input,

storage, sorting and display of data records.

The organisers of a marathon require a program for recording and processing the results.

Up to 50 runners may be taking part.

 Before the race, the surnames and forenames of runners will be entered and

stored on disc. It should be possible to reload this data, add the names of further

competitors and re-save the file.

 After the race, the times taken by runners will be entered. Times are to be

recorded in hours and minutes. Most runners are expected to take between 3

and 5 hours to complete the course.

 It is required to sort the results in two ways:

 (1) alphabetical order of competitors

 (2) time taken for the run

Begin the project in the standard way. Close all previous projects, then set up a New Project. Give

this the name marathon, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the subjects project, and select New / JFrame

Form. Give the Class Name as marathon, and the Package as marathonPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Close the program and return to the Design screen. Add a Table component to the form and

rename this as tblResults.

218 Java Programming for A-level Computer Science

Select the Table and go to the Properties window. Locate the model property and click in the right

column to open the Table Settings window.

Set the number of Rows to 50 and Columns to 5. Column 1 will be a sequence number generated by

the program. Leave the Title blank, set the field Type to Integer and remove the 'Editable' tick. For

the remaining columns, give the Titles and Data types as:

 Surname String

 Forename String

 Hours Integer

 Minutes Integer

Click the OK button to return to the form design screen. Check that the table headings are displayed

correctly. The table will display a vertical scroll bar to allow for the 50 rows of data.

Add buttons with the captions "Save file" and "Load file". Rename these as btnSave and btnLoad.

 Chapter 8: Sorting 219

Click the Source tab to move to the program code screen. We will begin by including the Java

modules needed for saving and loading data, handling data errors and editing the table data.

We will set up a filename "results.dat" for storing the table data.

We will then add a series of variable definitions. Notice that arrays are being set up to hold the

surnames, forenames and race times for the runners. We will also need temporary variables for the

triangular exchange of data during sorting.

package marathonPackage;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import javax.swing.JOptionPane;
import javax.swing.table.TableCellEditor;

public class marathon extends javax.swing.JFrame {

 public static String filename="results.dat";
 public static String[] surname=new String[50];
 public static String[] forename=new String[50];
 public static int[] hours=new int[50];
 public static int[] minutes=new int[50];
 public static String tempSurname;
 public static String tempForename;
 public static int tempHours;
 public static int tempMinutes;

 public marathon() {
 initComponents();
 }

It will be convenient to provide a method to clear the table entries and set up the sequence numbers

in the first column. We will call this method from marathon(), which is the first method to run

when the program first begins.

 public marathon() {
 initComponents();

 clearTable();

 }

 private void clearTable()
 {
 for (int i=0;i<50;i++)
 {
 tblResults.getModel().setValueAt(i+1,i,0);
 tblResults.getModel().setValueAt("",i,1);
 tblResults.getModel().setValueAt("",i,2);
 tblResults.getModel().setValueAt("",i,3);
 tblResults.getModel().setValueAt("",i,4);
 }

 }

220 Java Programming for A-level Computer Science

Run the program. Check that the table shows rows numbered from 1 to 50:

Close the program and return to the NetBeans editor. Use the Design tab to move to the form

layout view. Double click the "Save file" button to create a method.

The next step is to add code to the method to stop the table editor, to ensure that all data items are

available for processing.

We will save the data as a text file with variable length records. We will create a TRY ... CATCH

structure to handle errors, and add lines to open and close the results.dat file.

 private void btnSaveActionPerformed(java.awt.event.ActionEvent evt) {

 TableCellEditor editor = tblResults.getCellEditor();
 if (editor != null)
 {
 editor.stopCellEditing();
 }
 try
 {
 FileWriter w = new FileWriter(filename);
 BufferedWriter writer = new BufferedWriter(w);

 writer.close();
 JOptionPane.showMessageDialog(marathon.this, "Data saved");
 }
 catch (IOException e)
 {
 JOptionPane.showMessageDialog(marathon.this, "File error");
 }

 }

 Chapter 8: Sorting 221

We will add a loop to check each row of the table. If a surname is found on the current row, the

data values for this competitor will be collected, compiled into a record and saved into the file.

 try
 {
 FileWriter w = new FileWriter(filename);
 BufferedWriter writer = new BufferedWriter(w);

 for(int i=0;i<50;i++)
 {
 String s =(String) tblResults.getModel().getValueAt(i,1);
 if (s.length()>0)
 {
 s +=",";
 s +=(String) tblResults.getModel().getValueAt(i,2) + ",";
 s +=String.valueOf(tblResults.getModel().getValueAt(i,3)) + ",";
 s +=String.valueOf(tblResults.getModel().getValueAt(i,4));
 writer.write(s);
 writer.newLine();
 }
 }

 writer.close();
 JOptionPane.showMessageDialog(marathon.this, "Data saved");
 }
 catch (IOException e)

Run the program. Enter a series of competitor names in the table, then click the "Save file" button.

Use Windows Explorer to locate the results.dat file in the marathon folder. Open this using a text

editing application such as Notepad. Records will only be stored for the rows of the table containing

competitor names. Notice that commas mark the empty fields where times in hours and minutes

have not yet been entered.

222 Java Programming for A-level Computer Science

Close the program window and return to the NetBeans editing screen. Use the Design tab to move

to the form layout screen, then double click the "Load file" button to create a method.

Add lines of code to call the clearTable() method, then set up a TRY … CATCH structure which opens

then closes the results.dat file.

 private void btnLoadActionPerformed(java.awt.event.ActionEvent evt) {

 clearTable();
 try
 {
 FileReader r = new FileReader(filename);
 BufferedReader reader = new BufferedReader(r);

 reader.close();
 }
 catch (IOException e)
 {
 JOptionPane.showMessageDialog(marathon.this, "File error");
 }

 }

We can now insert lines of code to load each record in turn, split it into fields, then display the data

in the table. The line

 if (dataItem.length>2)
checks that hours and minutes fields have been saved for the current competitor, before attempting
to display this data.

 try

 {
 FileReader r = new FileReader(filename);
 BufferedReader reader = new BufferedReader(r);

 String s;
 int line=0;
 while((s=reader.readLine())!=null)
 {
 String dataItem[] = s.split(",");
 tblResults.getModel().setValueAt(dataItem[0],line,1);
 tblResults.getModel().setValueAt(dataItem[1],line,2);
 if (dataItem.length>2)
 {
 tblResults.getModel().setValueAt(dataItem[2],line,3);
 tblResults.getModel().setValueAt(dataItem[3],line,4);
 }
 line++;
 }

 reader.close();
 }
 catch (IOException e)

Run the program. click the "Load file" button and check that the competitor names are reloaded

correctly.

 Chapter 8: Sorting 223

Add times in hours and minutes for the competitors, then save the data.

Close, then re-run program. Click the "Load file" button and check that the competitor names and

times are displayed correctly.

Close the program window and return to the NetBeans editing screen. Use the Design tab to move

to the form layout view. Add a label "Results", and buttons with the captions "Sorted by name" and

"Sorted by time". Give these buttons the names btnNameSort and btnTimeSort.

Double click the "Sorted by name" button to create a method.

This method must begin by collecting the data values from the table and transferring them into

arrays, ready for sorting. The same procedure will be needed when the "Sorted by time" button is

clicked, so we can avoid duplicating the lines of program code by writing a separate method to

collect the data from the table.

We will add a line of code to call a collectData() method, and then on the lines below we will set up

the collectData() method:

private void btnNameSortActionPerformed(java.awt.event.ActionEvent evt) {

 int count=collectData();

}

private int collectData()
{
 int count=0;

 return count;
}

224 Java Programming for A-level Computer Science

You may notice that that collectData() is being used in a different way to previous methods we have

written, such as:

 private void clearTable()

The key word 'void' means that the method will carry out some task then end, without the need to

give back any result. In the case of clearTable(), all we require is that it resets the contents of the

data table.

In some situations, however, we require a method to process data then give back a result value. For

example, we might write a method to calculate the VAT on an item purchased in a shop. The first

line of the method might be written:

 private double VAT()

The method will calculate the VAT amount, then return this as a number in double format.

It is important that the collectData() method counts the number of competitors entered into the

table. This value is returned as an integer number. Notice the structure of the method so far…

 private int collectData()

{
 int count=0;
 return count;
}

The value which will be returned is the variable count. Initially this is set to zero, but it will be

changed by further lines of code which we add to the method. The returned value is then

transferred back to the line which originally called the method:

 int count = collectData();

and will be available for further use in the program. The returned value is called the output

parameter of the method.

Add lines of code to the collectData() method:

private int collectData()
{

 int count=0;

 TableCellEditor editor = tblResults.getCellEditor();
 if (editor != null)
 {
 editor.stopCellEditing();
 }
 for (int i=0;i<50;i++)
 {
 String h=tblResults.getModel().getValueAt(i,3).toString();
 if (h.length()>0)
 {
 surname[count]= tblResults.getModel().getValueAt(i,1).toString();
 forename[count]=tblResults.getModel().getValueAt(i,2).toString();
 hours[count]=Integer.parseInt(tblResults.getModel().getValueAt(i,3).toString());
 minutes[count]=Integer.parseInt(tblResults.getModel().getValueAt(i,4).toString());
 count++;
 }
 }

 return count;

 Chapter 8: Sorting 225

We began by closing the table editor, to ensure that all data values were available for processing.

A loop checks each of the 50 rows of the table. Since the sorted lists will be the results for the

marathon, we will only include competitors who completed the course and have a time recorded.

The program checks the entry in the Hours column. If this contains data, the values from each of the

columns are collected and transferred into the arrays. Surname and Forename are stored in String

format, and Hours and Minutes are in integer format. The count of competitors is then increased by

one.

Return to the NameSort button click method. We will add the outer loop for the Bubble Sort. The

number of records to be sorted is given by the variable count.

 private void btnNameSortActionPerformed(java.awt.event.ActionEvent evt) {

 int count=collectData();

 Boolean swap=true;
 while (swap==true)
 {
 swap=false;
 for (int i=0; i<count-1;i++)
 {

 }
 }

 }

When sorting names alphabetically, both the surname and forenames should be used. People with

the same surname should be sorted according to their forenames, for example:

 Jones, Alun

 Jones, Dafydd

We will therefore begin by combining surnames and forenames to make name variables for use in

the sort procedure. A swap will be carried out if the names are not currently in the correct

alphabetical order.

 Boolean swap=true;
 while (swap==true)
 {
 swap=false;
 for (int i=0; i<count-1;i++)
 {

 String name1=surname[i]+" "+forename[i];
 String name2=surname[i+1]+" "+forename[i+1];
 if (name1.compareTo(name2)>0)
 {
 swap=true;
 }

 }
 }

226 Java Programming for A-level Computer Science

The final stage of the Bubble Sort is to carry out the triangular exchange of the array elements. In

this program, it is necessary to make the same exchange of elements in each of the four arrays:

surname[], forename[], hours[] and minutes[]. If this is not done carefully, the data for different

competitors will be mixed together and corrupted.

Add the lines of program to carry out the triangular exchange:

 for (int i=0; i<count-1;i++)
 {
 String name1=surname[i]+" "+forename[i];
 String name2=surname[i+1]+" "+forename[i+1];
 if (name1.compareTo(name2)>0)
 {
 swap=true;

 tempSurname=surname[i];
 surname[i]=surname[i+1];
 surname[i+1]=tempSurname;

 tempForename=forename[i];
 forename[i]=forename[i+1];
 forename[i+1]=tempForename;

 tempHours=hours[i];
 hours[i]=hours[i+1];
 hours[i+1]=tempHours;

 tempMinutes=minutes[i];
 minutes[i]=minutes[i+1];
 minutes[i+1]=tempMinutes;

 }
 }

Once the sorting is complete, the data table can be cleared and the sorted records displayed. Add

lines of code to do this.

 tempMinutes=minutes[i];
 minutes[i]=minutes[i+1];
 minutes[i+1]=tempMinutes;
 }
 }
 }

 clearTable();
 for(int i=0;i<count;i++)
 {

 tblResults.getModel().setValueAt(surname[i],i,1);
 tblResults.getModel().setValueAt(forename[i],i,2);
 tblResults.getModel().setValueAt(hours[i],i,3);
 tblResults.getModel().setValueAt(minutes[i],i,4);
 }

 }

 Chapter 8: Sorting 227

Run the program. Enter or reload a series of competitor names, then add race times. Leave some

times blank, to represent competitors who did not complete the course. These competitors should

not be included in the results list. You might also include more than one competitor with the same

surname, to test the alphabetical sorting.

Click the "Sorted by name" button, and carefully check the results list which is displayed. The

correct race time should be shown for each competitor, even though the order of the records has

changed.

228 Java Programming for A-level Computer Science

Close the program and return to the NetBeans editing screen. Use the Design tab to go to the form

layout view.

To complete the project, we will produce a method to sort the competitors' results according to

their race times. We will only include competitors in the sorted list if they finished the marathon

and their race time has been recorded.

Double click the "Sorted by time" button to create a method. Begin the loops for the bubble sort in

the same way as the Sorted by name method.

 private void btnTimeSortActionPerformed(java.awt.event.ActionEvent evt) {

 int count=collectData();
 Boolean swap=true;
 while (swap==true)
 {
 swap=false;
 for (int i=0; i<count-1;i++)
 {

 }
 }

 }

We will now calculate competitors' race times as total minutes, then use these values for

comparison in the Bubble Sort procedure:

 while (swap==true)
 {
 swap=false;
 for (int i=0; i<count-1;i++)
 {

 int time1=hours[i]*60+minutes[i];
 int time2=hours[i+1]*60+minutes[i+1];
 if (time1>time2)
 {
 swap=true;
 tempSurname=surname[i];
 surname[i]=surname[i+1];
 surname[i+1]=tempSurname;

 tempForename=forename[i];
 forename[i]=forename[i+1];
 forename[i+1]=tempForename;

 tempHours=hours[i];
 hours[i]=hours[i+1];
 hours[i+1]=tempHours;

 tempMinutes=minutes[i];
 minutes[i]=minutes[i+1];
 minutes[i+1]=tempMinutes;
 }

 }
 }

 Chapter 8: Sorting 229

Once the sorting is completed, the data table can be cleared and the sorted records displayed. Add

lines of code to do this.

 tempMinutes=minutes[i];
 minutes[i]=minutes[i+1];
 minutes[i+1]=tempMinutes;
 }
 }
 }

 clearTable();
 for(int i=0;i<count;i++)
 {

 tblResults.getModel().setValueAt(surname[i],i,1);
 tblResults.getModel().setValueAt(forename[i],i,2);
 tblResults.getModel().setValueAt(hours[i],i,3);
 tblResults.getModel().setValueAt(minutes[i],i,4);
 }

 }

Run the program. Load the data which you had previously saved on disc. Click the "Sorted by time"
button and check that the competitors are listed correctly.

